Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.761
Filtrar
1.
Nature ; 628(8007): 433-441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509368

RESUMO

An important advance in cancer therapy has been the development of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of homologous recombination (HR)-deficient cancers1-6. PARP inhibitors trap PARPs on DNA. The trapped PARPs are thought to block replisome progression, leading to formation of DNA double-strand breaks that require HR for repair7. Here we show that PARP1 functions together with TIMELESS and TIPIN to protect the replisome in early S phase from transcription-replication conflicts. Furthermore, the synthetic lethality of PARP inhibitors with HR deficiency is due to an inability to repair DNA damage caused by transcription-replication conflicts, rather than by trapped PARPs. Along these lines, inhibiting transcription elongation in early S phase rendered HR-deficient cells resistant to PARP inhibitors and depleting PARP1 by small-interfering RNA was synthetic lethal with HR deficiency. Thus, inhibiting PARP1 enzymatic activity may suffice for treatment efficacy in HR-deficient settings.


Assuntos
Replicação do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , Transcrição Gênica , Humanos , Quebras de DNA de Cadeia Dupla , Replicação do DNA/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Reparo de DNA por Recombinação , Fase S , Transcrição Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo
2.
J Biol Chem ; 299(12): 105385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890780

RESUMO

Cancer is a genetic disease requiring multiple mutations for its development. However, many carcinogens are DNA-unreactive and nonmutagenic and consequently described as nongenotoxic. One of such carcinogens is nickel, a global environmental pollutant abundantly emitted by burning of coal. We investigated activation of DNA damage responses by Ni and identified this metal as a replication stressor. Genotoxic stress markers indicated the accumulation of ssDNA and stalled replication forks, and Ni-treated cells were dependent on ATR for suppression of DNA damage and long-term survival. Replication stress by Ni resulted from destabilization of RRM1 and RRM2 subunits of ribonucleotide reductase and the resulting deficiency in dNTPs. Ni also increased DNA incorporation of rNMPs (detected by a specific fluorescent assay) and strongly enhanced their genotoxicity as a result of repressed repair of TOP1-DNA protein crosslinks (TOP1-DPC). The DPC-trap assay found severely impaired SUMOylation and K48-polyubiquitination of DNA-crosslinked TOP1 due to downregulation of specific enzymes. Our findings identified Ni as the human carcinogen inducing genome instability via DNA-embedded ribonucleotides and accumulation of TOP1-DPC which are carcinogenic abnormalities with poor detectability by the standard mutagenicity tests. The discovered mechanisms for Ni could also play a role in genotoxicity of other protein-reactive carcinogens.


Assuntos
Carcinógenos , Replicação do DNA , Níquel , Nucleotídeos , Humanos , Carcinógenos/toxicidade , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Níquel/toxicidade , Saccharomyces cerevisiae/metabolismo , Nucleotídeos/biossíntese
3.
Nature ; 622(7981): 180-187, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648864

RESUMO

Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.


Assuntos
Antibacterianos , Sítios de Ligação , RNA Polimerases Dirigidas por DNA , Escherichia coli , Mutação , Rifampina , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Quebras de DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Nucleotídeos/deficiência , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas , Rifampina/química , Rifampina/metabolismo , Rifampina/farmacologia , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
4.
Nucleic Acids Res ; 51(16): 8532-8549, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37216608

RESUMO

Friedreich's ataxia (FRDA) is caused by expansions of GAA•TTC repeats in the first intron of the human FXN gene that occur during both intergenerational transmissions and in somatic cells. Here we describe an experimental system to analyze large-scale repeat expansions in cultured human cells. It employs a shuttle plasmid that can replicate from the SV40 origin in human cells or be stably maintained in S. cerevisiae utilizing ARS4-CEN6. It also contains a selectable cassette allowing us to detect repeat expansions that accumulated in human cells upon plasmid transformation into yeast. We indeed observed massive expansions of GAA•TTC repeats, making it the first genetically tractable experimental system to study large-scale repeat expansions in human cells. Further, GAA•TTC repeats stall replication fork progression, while the frequency of repeat expansions appears to depend on proteins implicated in replication fork stalling, reversal, and restart. Locked nucleic acid (LNA)-DNA mixmer oligonucleotides and peptide nucleic acid (PNA) oligomers, which interfere with triplex formation at GAA•TTC repeats in vitro, prevented the expansion of these repeats in human cells. We hypothesize, therefore, that triplex formation by GAA•TTC repeats stall replication fork progression, ultimately leading to repeat expansions during replication fork restart.


Assuntos
Ataxia de Friedreich , Oligonucleotídeos , Ácidos Nucleicos Peptídicos , Expansão das Repetições de Trinucleotídeos , Humanos , DNA , Replicação do DNA/efeitos dos fármacos , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Oligonucleotídeos/farmacologia , Ácidos Nucleicos Peptídicos/farmacologia , Saccharomyces cerevisiae/genética
5.
J Virol ; 97(6): e0037023, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37219458

RESUMO

DNA replication of E1-deleted first-generation adenoviruses (AdV) in cultured cancer cells has been reported repeatedly and it was suggested that certain cellular proteins could functionally compensate for E1A, leading to the expression of the early region 2 (E2)-encoded proteins and subsequently virus replication. Referring to this, the observation was named E1A-like activity. In this study, we investigated different cell cycle inhibitors with respect to their ability to increase viral DNA replication of dl70-3, an E1-deleted adenovirus. Our analyses of this issue revealed that in particular inhibition of cyclin-dependent kinases 4/6 (CDK4/6i) increased E1-independent adenovirus E2-expression and viral DNA replication. Detailed analysis of the E2-expression in dl70-3 infected cells by RT-qPCR showed that the increase in E2-expression originated from the E2-early promoter. Mutations of the two E2F-binding sites in the E2-early promoter (pE2early-LucM) caused a significant reduction in E2-early promoter activity in trans-activation assays. Accordingly, mutations of the E2F-binding sites in the E2-early promoter in a virus named dl70-3/E2Fm completely abolished CDK4/6i induced viral DNA replication. Thus, our data show that E2F-binding sites in the E2-early promoter are crucial for E1A independent adenoviral DNA replication of E1-deleted vectors in cancer cells. IMPORTANCE E1-deleted AdV vectors are considered replication deficient and are important tools for the study of virus biology, gene therapy, and large-scale vaccine development. However, deletion of the E1 genes does not completely abolish viral DNA replication in cancer cells. Here, we report, that the two E2F-binding sites in the adenoviral E2-early promoter contribute substantially to the so-called E1A-like activity in tumor cells. With this finding, on the one hand, the safety profile of viral vaccine vectors can be increased and, on the other hand, the oncolytic property for cancer therapy might be improved through targeted manipulation of the host cell.


Assuntos
Adenoviridae , Ciclo Celular , Replicação do DNA , Replicação Viral , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células/efeitos dos fármacos , Células/virologia , Replicação do DNA/efeitos dos fármacos , DNA Viral/metabolismo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Mutação , Regiões Promotoras Genéticas/genética , Inibidores de Proteínas Quinases/farmacologia , Replicação Viral/fisiologia , Humanos
6.
Nat Commun ; 14(1): 381, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693839

RESUMO

Fanconi Anemia (FA) is a rare, genome instability-associated disease characterized by a deficiency in repairing DNA crosslinks, which are known to perturb several cellular processes, including DNA transcription, replication, and repair. Formaldehyde, a by-product of metabolism, is thought to drive FA by generating DNA interstrand crosslinks (ICLs) and DNA-protein crosslinks (DPCs). However, the impact of formaldehyde on global cellular pathways has not been investigated thoroughly. Herein, using a pangenomic CRISPR-Cas9 screen, we identify EXO1 as a critical regulator of formaldehyde-induced DNA lesions. We show that EXO1 knockout cell lines exhibit formaldehyde sensitivity leading to the accumulation of replicative stress, DNA double-strand breaks, and quadriradial chromosomes, a typical feature of FA. After formaldehyde exposure, EXO1 is recruited to chromatin, protects DNA replication forks from degradation, and functions in parallel with the FA pathway to promote cell survival. In vitro, EXO1-mediated exonuclease activity is proficient in removing DPCs. Collectively, we show that EXO1 limits replication stress and DNA damage to counteract formaldehyde-induced genome instability.


Assuntos
Sistemas CRISPR-Cas , Tolerância a Medicamentos , Exodesoxirribonucleases , Anemia de Fanconi , Formaldeído , Humanos , DNA , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Anemia de Fanconi/induzido quimicamente , Anemia de Fanconi/genética , Formaldeído/toxicidade , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Tolerância a Medicamentos/genética
7.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216252

RESUMO

Mosaicism is the most important limitation for one-step gene editing in embryos by CRISPR/Cas9 because cuts and repairs sometimes take place after the first DNA replication of the zygote. To try to minimize the risk of mosaicism, in this study a reversible DNA replication inhibitor was used after the release of CRISPR/Cas9 in the cell. There is no previous information on the use of aphidicolin in porcine embryos, so the reversible inhibition of DNA replication and the effect on embryo development of different concentrations of this drug was first evaluated. The effect of incubation with aphidicolin was tested with CRISPR/Cas9 at different concentrations and different delivery methodologies. As a result, the reversible inhibition of DNA replication was observed, and it was concentration dependent. An optimal concentration of 0.5 µM was established and used for subsequent experiments. Following the use of this drug with CRISPR/Cas9, a halving of mosaicism was observed together with a detrimental effect on embryo development. In conclusion, the use of reversible inhibition of DNA replication offers a way to reduce mosaicism. Nevertheless, due to the reduction in embryo development, it would be necessary to reach a balance for its use to be feasible.


Assuntos
Afidicolina/farmacologia , Sistemas CRISPR-Cas/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Eucariotos/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Desenvolvimento Embrionário/efeitos dos fármacos , Edição de Genes/métodos , Mosaicismo/efeitos dos fármacos , Suínos , Zigoto/efeitos dos fármacos
8.
Cell Death Dis ; 13(2): 96, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110528

RESUMO

Replication stress (RS) has a pivotal role in tumor initiation, progression, or therapeutic resistance. In this study, we depicted the mechanism of breast cancer stem cells' (bCSCs) response to RS and its clinical implication. We demonstrated that bCSCs present a limited level of RS compared with non-bCSCs in patient samples. We described for the first time that the spatial nuclear location of BMI1 protein triggers RS response in breast cancers. Hence, in bCSCs, BMI1 is rapidly located to stalled replication forks to recruit RAD51 and activate homologous-recombination machinery, whereas in non-bCSCs BMI1 is trapped on demethylated 1q12 megasatellites precluding effective RS response. We further demonstrated that BMI1/RAD51 axis activation is necessary to prevent cisplatin-induced DNA damage and that treatment of patient-derived xenografts with a RAD51 inhibitor sensitizes tumor-initiating cells to cisplatin. The comprehensive view of replicative-stress response in bCSC has profound implications for understanding and improving therapeutic resistance.


Assuntos
Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Complexo Repressor Polycomb 1/metabolismo , Rad51 Recombinase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Recombinação Homóloga , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Rad51 Recombinase/antagonistas & inibidores
9.
Sci Rep ; 12(1): 3093, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197531

RESUMO

Development of chemotherapy has led to a high survival rate of cancer patients; however, the severe side effects of anticancer drugs, including organ hypoplasia, persist. To assume the side effect of anticancer drugs, we established a new ex vivo screening model and described a method for suppressing side effects. Cyclophosphamide (CPA) is a commonly used anticancer drug and causes severe side effects in developing organs with intensive proliferation, including the teeth and hair. Using the organ culture model, we found that treatment with CPA disturbed the growth of tooth germs by inducing DNA damage, apoptosis and suppressing cellular proliferation and differentiation. Furthermore, low temperature suppressed CPA-mediated inhibition of organ development. Our ex vivo and in vitro analysis revealed that low temperature impeded Rb phosphorylation and caused cell cycle arrest at the G1 phase during CPA treatment. This can prevent the CPA-mediated cell damage of DNA replication caused by the cross-linking reaction of CPA. Our findings suggest that the side effects of anticancer drugs on organ development can be avoided by maintaining the internal environment under low temperature.


Assuntos
Antineoplásicos/efeitos adversos , Ciclofosfamida/efeitos adversos , Temperatura , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Humanos , Modelos Biológicos , Técnicas de Cultura de Órgãos
10.
Theranostics ; 12(2): 657-674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976206

RESUMO

Rationale: Corneal neovascularization (CoNV) is a severe complication of various types of corneal diseases, that leads to permanent visual impairment. Current treatments for CoNV, such as steroids or anti-vascular endothelial growth factor agents, are argued over their therapeutic efficacy and adverse effects. Here, we demonstrate that transforming growth factor-ß (TGF-ß)-activated kinase 1 (TAK1) plays an important role in the pathogenesis of CoNV. Methods: Angiogenic activities were assessed in ex vivo and in vitro models subjected to TAK1 inhibition by 5Z-7-oxozeaenol, a selective inhibitor of TAK1. RNA-Seq was used to examine pathways that could be potentially affected by TAK1 inhibition. A gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol was developed as the eyedrop to treat CoNV in a rodent model. Results: We showed that 5Z-7-oxozeaenol reduced angiogenic processes through impeding cell proliferation. Transcriptome analysis suggested 5Z-7-oxozeaenol principally suppresses cell cycle and DNA replication, thereby restraining cell proliferation. In addition, inhibition of TAK1 by 5Z-7-oxozeaenol blocked TNFα-mediated NFκB signalling, and its downstream genes related to angiogenesis and inflammation. 5Z-7-oxozeaenol also ameliorated pro-angiogenic activity, including endothelial migration and tube formation. Furthermore, topical administration of the gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol led to significantly greater suppression of CoNV in a mouse model compared to the free form of 5Z-7-oxozeaenol, likely due to extended retention of 5Z-7-oxozeaenol in the cornea. Conclusion: Our study shows the potential of TAK1 as a therapeutic target for pathological angiogenesis, and the gelatin nanoparticle coupled with 5Z-7-oxozeaenol as a promising new eyedrop administration model in treatment of CoNV.


Assuntos
Neovascularização da Córnea , Endotélio Vascular , Lactonas , MAP Quinase Quinase Quinases , Resorcinóis , Animais , Humanos , Masculino , Camundongos , Administração Oftálmica , Cápsulas , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Neovascularização da Córnea/tratamento farmacológico , Citocinas/antagonistas & inibidores , Replicação do DNA/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Endotélio Vascular/efeitos dos fármacos , Gelatina , Lactonas/administração & dosagem , Lactonas/farmacologia , Lactonas/uso terapêutico , MAP Quinase Quinase Quinases/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Nanopartículas , Soluções Oftálmicas , Resorcinóis/administração & dosagem , Resorcinóis/farmacologia , Resorcinóis/uso terapêutico , RNA-Seq
11.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055077

RESUMO

Whilst avoidance of chemical modifications of DNA bases is essential to maintain genome stability, during evolution eukaryotic cells have evolved a chemically reversible modification of the cytosine base. These dynamic methylation and demethylation reactions on carbon-5 of cytosine regulate several cellular and developmental processes such as embryonic stem cell pluripotency, cell identity, differentiation or tumourgenesis. Whereas these physiological processes are well characterized, very little is known about the toxicity of these cytosine analogues when they incorporate during replication. Here, we report a role of the base excision repair factor XRCC1 in protecting replication fork upon incorporation of 5-hydroxymethyl-2'-deoxycytosine (5hmC) and its deamination product 5-hydroxymethyl-2'-deoxyuridine (5hmU) during DNA synthesis. In the absence of XRCC1, 5hmC exposure leads to increased genomic instability, replication fork impairment and cell lethality. Moreover, the 5hmC deamination product 5hmU recapitulated the genomic instability phenotypes observed by 5hmC exposure, suggesting that 5hmU accounts for the observed by 5hmC exposure. Remarkably, 5hmC-dependent genomic instability and replication fork impairment seen in Xrcc1-/- cells were exacerbated by the trapping of Parp1 on chromatin, indicating that XRCC1 maintains replication fork stability during processing of 5hmC and 5hmU by the base excision repair pathway. Our findings uncover natural epigenetic DNA bases 5hmC and 5hmU as genotoxic nucleosides that threaten replication dynamics and genome integrity in the absence of XRCC1.


Assuntos
Desmetilação do DNA , Replicação do DNA , Desoxicitidina/análogos & derivados , Timidina/análogos & derivados , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , 5-Metilcitosina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Epigênese Genética , Instabilidade Genômica , Humanos , Origem de Replicação , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
12.
EMBO J ; 41(4): e108290, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35028974

RESUMO

Nucleotide metabolism fuels normal DNA replication and is also primarily targeted by the DNA replication checkpoint when replication stalls. To reveal a comprehensive interconnection between genome maintenance and metabolism, we analyzed the metabolomic changes upon replication stress in the budding yeast S. cerevisiae. We found that upon treatment of cells with hydroxyurea, glucose is rapidly diverted to the oxidative pentose phosphate pathway (PPP). This effect is mediated by the AMP-dependent kinase, SNF1, which phosphorylates the transcription factor Mig1, thereby relieving repression of the gene encoding the rate-limiting enzyme of the PPP. Surprisingly, NADPH produced by the PPP is required for efficient recruitment of replication protein A (RPA) to single-stranded DNA, providing the signal for the activation of the Mec1/ATR-Rad53/CHK1 checkpoint signaling kinase cascade. Thus, SNF1, best known as a central energy controller, determines a fast mode of replication checkpoint activation through a redox mechanism. These findings establish that SNF1 provides a hub with direct links to cellular metabolism, redox, and surveillance of DNA replication in eukaryotes.


Assuntos
Replicação do DNA , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA de Cadeia Simples/metabolismo , Glucose/genética , Glucose/metabolismo , Glicólise/fisiologia , Hidroxiureia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NADP/metabolismo , Via de Pentose Fosfato , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Virol ; 96(2): e0132621, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34669461

RESUMO

Parvovirus B19 (B19V) infection can cause hematological disorders and fetal hydrops during pregnancy. Currently, no antivirals or vaccines are available for the treatment or prevention of B19V infection. To identify novel small-molecule antivirals against B19V replication, we developed a high-throughput screening (HTS) assay, which is based on an in vitro nicking assay using recombinant N-terminal amino acids 1 to 176 of the viral large nonstructural protein (NS1N) and a fluorescently labeled DNA probe (OriQ) that spans the nicking site of the viral DNA replication origin. We collectively screened 17,040 compounds and identified 2,178 (12.78%) hits that possess >10% inhibition of the NS1 nicking activity, among which 84 hits were confirmed to inhibit nicking in a dose-dependent manner. Using ex vivo-expanded primary human erythroid progenitor cells (EPCs) infected by B19V, we validated 24 compounds that demonstrated >50% in vivo inhibition of B19V infection at 10 µM, which can be categorized into 7 structure scaffolds. Based on the therapeutic index (half-maximal cytotoxic concentration [CC50]/half-maximal effective concentration [EC50] ratio) in EPCs, the top 4 compounds were chosen to examine their inhibitions of B19V infection in EPCs at two times of the 90% maximal effective concentration (EC90). A purine derivative (P7) demonstrated an antiviral effect (EC50 = 1.46 µM) without prominent cytotoxicity (CC50 = 71.8 µM) in EPCs and exhibited 92% inhibition of B19V infection in EPCs at 3.32 µM, which can be used as the lead compound in future studies for the treatment of B19V infection-caused hematological disorders. IMPORTANCE B19V encodes a large nonstructural protein, NS1. Its N-terminal domain (NS1N) consisting of amino acids 1 to 176 binds to viral DNA and serves as an endonuclease to nick the viral DNA replication origins, which is a pivotal step in rolling-hairpin-dependent B19V DNA replication. For high-throughput screening (HTS) of anti-B19V antivirals, we miniaturized a fluorescence-based in vitro nicking assay, which employs a fluorophore-labeled probe spanning the terminal resolution site (trs) and the NS1N protein, into a 384-well-plate format. The HTS assay showed high reliability and capability in screening 17,040 compounds. Based on the therapeutic index (half-maximal cytotoxic concentration [CC50]/half-maximal effective concentration [EC50] ratio) in EPCs, a purine derivative demonstrated an antiviral effect of 92% inhibition of B19V infection in EPCs at 3.32 µM (two times the EC90). Our study demonstrated a robust HTS assay for screening antivirals against B19V infection.


Assuntos
Antivirais/farmacologia , Células Precursoras Eritroides/virologia , Ensaios de Triagem em Larga Escala/métodos , Parvovirus B19 Humano/efeitos dos fármacos , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Viral/metabolismo , Células Precursoras Eritroides/efeitos dos fármacos , Corantes Fluorescentes , Humanos , Parvovirus B19 Humano/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Origem de Replicação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
14.
Clin Exp Pharmacol Physiol ; 49(1): 134-144, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448246

RESUMO

At present, there are still many problems in the treatment of lung cancer, such as high cost, side effects and low quality of life. The advantages of traditional Chinese medicine (TCM) in the treatment of lung cancer are reflected. Berberine has been increasingly popular in colorectal cancer treatment, but little is known about its bioactivity against non-small cell lung cancer (NSCLC). Cell proliferation, cell apoptosis, cDNA microarray, gene and protein expression, and NSCLC transplanted tumour growth were performed. Berberine suppressed NSCLC cell proliferation and colony formation in vitro and inhibited NSCLC tumour growth in subcutaneously transplanted tumour lung tumour models, leading to prolonged survival of tumour-bearing mice. However, berberine did not induce the cleavage of Caspase 3 and PARP1, and could not induce apoptosis in all NSCLC cells. Moreover, 646 genes were differentially expressed upon berberine administration, which were involved in seven signal pathways, such as DNA replication. In cDNA microarray, berberine downregulated the expression of RRM1, RRM2, LIG1, POLE2 that involving DNA repair and replication. Our findings demonstrate that berberine inhibits NSCLC cells growth through repressing DNA repair and replication rather than through apoptosis. Berberine could be used as a promising therapeutic candidate for NSCLC patients.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Berberina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Berberina/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos
15.
J Gen Virol ; 102(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34882533

RESUMO

The shortcomings of current anti-human cytomegalovirus (HCMV) drugs has stimulated a search for anti-HCMV compounds with novel targets. We screened collections of bioactive compounds and identified a range of compounds with the potential to inhibit HCMV replication. Of these compounds, we selected bisbenzimide compound RO-90-7501 for further study. We generated analogues of RO-90-7501 and found that one compound, MRT00210423, had increased anti-HCMV activity compared to RO-90-7501. Using a combination of compound analogues, microscopy and biochemical assays we found RO-90-7501 and MRT00210423 interacted with DNA. In single molecule microscopy experiments we found RO-90-7501, but not MRT00210423, was able to compact DNA, suggesting that compaction of DNA was non-obligatory for anti-HCMV effects. Using bioinformatics analysis, we found that there were many putative bisbenzimide binding sites in the HCMV DNA genome. However, using western blotting, quantitative PCR and electron microscopy, we found that at a concentration able to inhibit HCMV replication our compounds had little or no effect on production of certain HCMV proteins or DNA synthesis, but did have a notable inhibitory effect on HCMV capsid production. We reasoned that these effects may have involved binding of our compounds to the HCMV genome and/or host cell chromatin. Therefore, our data expand our understanding of compounds with anti-HCMV activity and suggest targeting of DNA with bisbenzimide compounds may be a useful anti-HCMV strategy.


Assuntos
Antivirais/farmacologia , Bisbenzimidazol/farmacologia , Citomegalovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/química , Sítios de Ligação , Bisbenzimidazol/química , Capsídeo/metabolismo , Linhagem Celular , Citomegalovirus/fisiologia , DNA/biossíntese , DNA/química , Replicação do DNA/efeitos dos fármacos , Humanos , Estrutura Molecular , Carga Viral/efeitos dos fármacos
16.
Nat Commun ; 12(1): 6997, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873176

RESUMO

Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication.


Assuntos
Replicação do DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Desoxiglucose/farmacologia , Mitocôndrias/efeitos dos fármacos , Mutação Puntual , Células A549 , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Células Cultivadas , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glucose/análogos & derivados , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos
17.
Cells ; 10(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34943918

RESUMO

Experiments on Vicia faba root meristem cells exposed to 150 µM cadmium chloride (CdCl2) were undertaken to analyse epigenetic changes, mainly with respect to DNA replication stress. Histone modifications examined by means of immunofluorescence labeling included: (1) acetylation of histone H3 on lysine 56 (H3K56Ac), involved in transcription, S phase, and response to DNA damage during DNA biosynthesis; (2) dimethylation of histone H3 on lysine 79 (H3K79Me2), correlated with the replication initiation; (3) phosphorylation of histone H3 on threonine 45 (H3T45Ph), engaged in DNA synthesis and apoptosis. Moreover, immunostaining using specific antibodies against 5-MetC-modified DNA was used to determine the level of DNA methylation. A significant decrease in the level of H3K79Me2, noted in all phases of the CdCl2-treated interphase cell nuclei, was found to correspond with: (1) an increase in the mean number of intranuclear foci of H3K56Ac histones (observed mainly in S-phase), (2) a plethora of nuclear and nucleolar labeling patterns (combined with a general decrease in H3T45Ph), and (3) a decrease in DNA methylation. All these changes correlate well with a general viewpoint that DNA modifications and post-translational histone modifications play an important role in gene expression and plant development under cadmium-induced stress conditions.


Assuntos
Cádmio/toxicidade , Replicação do DNA/genética , Epigênese Genética , Meristema/citologia , Meristema/genética , Estresse Fisiológico/genética , Vicia faba/genética , 5-Metilcitosina/metabolismo , Acetilação/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Cromatina/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA de Plantas/metabolismo , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Lisina/metabolismo , Meristema/efeitos dos fármacos , Metilação/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Vicia faba/citologia , Vicia faba/efeitos dos fármacos
18.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948245

RESUMO

Heme oxygenase-1 (HO-1) is one of the most powerful cytoprotective proteins known. The goal of this study was to explore the effects of HO-1 in c-kit-positive cardiac cells (CPCs). LinNEG/c-kitPOS CPCs were isolated and expanded from wild-type (WT), HO-1 transgenic (TG), or HO-1 knockout (KO) mouse hearts. Compared with WT CPCs, cell proliferation was significantly increased in HO-1TG CPCs and decreased in HO-1KO CPCs. HO-1TG CPCs also exhibited a marked increase in new DNA synthesis during the S-phase of cell division, not only under normoxia (21% O2) but after severe hypoxia (1% O2 for 16 h). These properties of HO-1TG CPCs were associated with nuclear translocation (and thus activation) of Nrf2, a key transcription factor that regulates antioxidant genes, and increased protein expression of Ec-SOD, the only extracellular antioxidant enzyme. These data demonstrate that HO-1 upregulates Ec-SOD in CPCs and suggest that this occurs via activation of Nrf2, which thus is potentially involved in the crosstalk between two antioxidants, HO-1 in cytoplasm and Ec-SOD in extracellular matrix. Overexpression of HO-1 in CPCs may improve the survival and reparative ability of CPCs after transplantation and thus may have potential clinical application to increase efficacy of cell therapy.


Assuntos
Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Antioxidantes/farmacologia , Proliferação de Células , Replicação do DNA/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Coração , Heme Oxigenase (Desciclizante)/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fase S , Superóxido Dismutase/metabolismo
19.
Cytogenet Genome Res ; 161(8-9): 437-444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34818230

RESUMO

E/L Repli-seq is a powerful tool for detecting cell type-specific replication landscapes in mammalian cells, but its potential to monitor DNA replication under replication stress awaits better understanding. Here, we used E/L Repli-seq to examine the temporal order of DNA replication in human retinal pigment epithelium cells treated with the topoisomerase I inhibitor camptothecin. We found that the replication profiles by E/L Repli-seq exhibit characteristic patterns after replication-stress induction, including the loss of specific initiation zones within individual early replication timing domains. We also observed global disappearance of the replication timing domain structures in the profiles, which can be explained by checkpoint-dependent suppression of replication initiation. Thus, our results demonstrate the effectiveness of E/L Repli-seq at identifying cells with replication-stress-induced altered DNA replication programs.


Assuntos
Camptotecina/farmacologia , Replicação do DNA/efeitos dos fármacos , Período de Replicação do DNA/efeitos dos fármacos , Humanos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Inibidores da Topoisomerase I/farmacologia
20.
Viruses ; 13(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34835025

RESUMO

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which still causes large economic losses for the swine industry. Therefore, it is urgent to find a new strategy to prevent and control PRV infection. Previous studies have proven that guanine (G)-rich DNA or RNA sequences in some other viruses' genomes have the potential to form G-quadruplex (G4), which serve as promising antivirus targets. In this study, we identified two novel G4-forming sequences, OriL-A and OriL-S, which are located at the upstream origin of replication (OriL) in the PRV genome and conserved across 32 PRV strains. Circular dichroism (CD) spectroscopy and a gel electrophoresis assay showed that the two G-rich sequences can fold into parallel G4 structures in vitro. Moreover, fluorescence resonance energy transfer (FRET) melting and a Taq polymerase stop assay indicated that the G4 ligand PhenDC3 has the capacity to bind and stabilize the G4. Notably, the treatment of PRV-infected cells with G4-stabilizer PhenDC3 significantly inhibited PRV DNA replication in host cells but did not affect PRV's attachment and entry. These results not only expand our knowledge about the G4 characteristics in the PRV genome but also suggest that G4 may serve as an innovative therapeutic target against PRV.


Assuntos
Antivirais/farmacologia , Quadruplex G , Herpesvirus Suídeo 1/genética , Origem de Replicação/genética , Animais , Antivirais/química , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , DNA Viral/biossíntese , DNA Viral/química , DNA Viral/efeitos dos fármacos , Compostos de Anéis Fundidos/química , Compostos de Anéis Fundidos/farmacologia , Quadruplex G/efeitos dos fármacos , Genoma Viral/efeitos dos fármacos , Genoma Viral/genética , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/fisiologia , Origem de Replicação/efeitos dos fármacos , Suínos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...